Abstract

AbstractClimate stabilization scenarios emphasize the importance of land‐based mitigation to achieve ambitious mitigation goals. The stabilization scenarios informing the recent IPCC's Fifth Assessment Report suggest that bioenergy could contribute anywhere between 10 and 245 EJ to climate change mitigation in 2100. High deployment of bioenergy with low life cycle GHG emissions would enable ambitious climate stabilization futures and reduce demands on other sectors and options. Bioenergy with carbon capture and storage (BECCS) would even enable so‐called negative emissions, possibly in the order of magnitude of 50% of today's annual gross emissions. Here, I discuss key assumptions that differ between economic and ecological perspectives. I find that high future yield assumptions, plausible in stabilization scenarios, look less realistic when evaluated in biophysical metrics. Yield assumptions also determine the magnitude of counterfactual land carbon stock development and partially determine the potential of BECCS. High fertilizer input required for high yields would likely hasten ecosystem degradation. I conclude that land‐based mitigation strategies remain highly speculative; a constant iteration between synoptic integrated assessment models and more particularistic and fine‐grained approaches is a crucial precondition for capturing complex dynamics and biophysical constraints that are essential for comprehensive assessments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call