Abstract

AbstractThis paper examines ecosystem restoration practices that focus on water temperature reductions in the upper mainstem Willamette River, Oregon, for the benefit of endangered salmonids and other native cold‐water species. The analysis integrates hydrologic, natural science and economic models to determine the cost‐effectiveness of alternative water temperature reduction strategies. A temperature model is used to simulate the effects of combinations of upstream riparian shading and flow augmentations on downstream water temperatures. Costs associated with these strategies are estimated and consist of the opportunity costs of lost agricultural production and recreation opportunities due to flow releases from an up‐stream reservoir. Temperature reductions from another strategy, hyporheic flow enhancement, are also examined. Restoration strategies associated with enhanced hyporheic cooling consist of removal/reconnection of current obstacles to the creation of dynamic river channel complexity. The observed reduction of summer water temperatures associated with enhanced channel complexity indicates that restoring hyporheic flow processes is more likely to achieve cost‐effective temperature reductions and meet the total maximum daily load (TMDL) target than conventional approaches that rely on increased riparian shading or/and combinations of flow augmentation. Although the costs associated with the hyporheic flow enhancement approach are substantial, the effects of such a long‐term ecological improvement of the floodplain are expected to assist the recovery of salmonid populations and provide ancillary benefits to society. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.