Abstract
A new heteroskedastic hedonic regression model is suggested which takes into account time-varying volatility and is applied to a blue chips art market. A nonparametric local likelihood estimator is proposed, and this is more precise than the often used dummy variables method. The empirical analysis reveals that errors are considerably non-Gaussian, and that a Student distribution with time-varying scale and degrees of freedom does well in explaining deviations of prices from their expectation. The art price index is a smooth function of time and has a variability that is comparable to the volatility of stock indices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.