Abstract

This paper proposes a new approach to modeling financial transactions data. A new model for discrete valued time series is proposed in the context of generalized linear models. Since the model is specified conditional on both the previous state, as well as the historic distribution, we call the model the Autoregressive Conditional Multinomial (ACM) model. When the data are viewed as a marked point process, the ACD model proposed in Engle and Russell (1998) allows for joint modeling of the price transition probabilities and the arrival times of the transactions. In this marked point process context, the transition probabilities vary continuously through time and are therefore duration dependent. Finally, variations of the model allow for volume and spreads to impact the conditional distribution of price changes. Impulse response studies show the long run price impact of a transaction can be very sensitive to volume but is less sensitive to the spread and transaction rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.