Abstract

Anseriformes is a diverse group of birds that comprises screamers, the Magpie Goose, and swans ducks and geese, with a relatively rich fossil record. Waterfowl live in close relation to water bodies, but show a diversity of locomotory habits, being typically categorized as walkers, dabblers, and divers. Owing to its functional significance and high preservation potential, the tarsometatarsus has been considered to be a "key" element upon which to base ecomorphological inferences in fossil waterfowl. For instance, based on features of the tarsometatarsus the Miocene flightless duck Cayaoa bruneti and the Oligocene-Miocene large waterfowl Paranyroca have been inferred as divers. Herein, we use a geometric morphometric approach and comparative methods to assess the phylogenetic and ecomorphological signals in the shape and size of waterfowl tarsometatarsi in relation to their locomotory habits. We also apply phylogenetic flexible discriminant analysis (pFDA) to test the inferred diving habits in the extinct waterfowl Cayaoa and Paranyroca. Extant waterfowl species are largely distributed according to their locomotory habit along the main axis of variation in the shape space, a pattern mirrored by the phylogenetic generalized least squares model, which shows that a third of the shape variation is significantly explained by the habit. The pFDA reclassifies correctly almost all extant species and classified with high posterior probabilities the fossil Cayaoa and Paranyroca as a diver and as a dabbler, respectively. Our quantitative multivariate approach confirms the tarsometatarsus as a useful source of data upon which reliably assesses locomotory habits of fossil waterfowl.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call