Abstract
This paper presents investigating the customer characteristics of payment method change in the mail order industry. This time we are focusing on the transactional activity of bad debt customers. These kinds of investigations have not made intensively, such as the shipping address, the recipient name, and the payment method so far and the conventional method for predicting such knowledge depends on the employees’ working experiences. For these backgrounds, we observed the transaction data with the bad debt customer information gathered from a mail order company and characterized the customer with machine learning. From the results of the analysis, we are succeeded in characterizing the potential customers. Intensive research revealed that the characteristics of customers who make fraud transactions. This result will make use of the revenue expansion with the improvement of the bad debt collections in the target industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Law and Security Review: The International Journal of Technology and Practice
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.