Abstract

West Nile virus (WNV) represents a serious burden to human and animal health because of its capacity to cause unforeseen and large epidemics. Until 2004, only lineage 1 and 3 WNV strains had been found in Europe. Lineage 2 strains were initially isolated in 2004 (Hungary) and in 2008 (Austria) and for the first time caused a major WNV epidemic in 2010 in Greece with 262 clinical human cases and 35 fatalities. Since then, WNV lineage 2 outbreaks have been reported in several European countries including Italy, Serbia and Greece. Understanding the interaction of ecological factors that affect WNV transmission is crucial for preventing or decreasing the impact of future epidemics. The synchronous co-occurrence of competent mosquito vectors, virus, bird reservoir hosts, and susceptible humans is necessary for the initiation and propagation of an epidemic. Weather is the key abiotic factor influencing the life-cycles of the mosquito vector, the virus, the reservoir hosts and the interactions between them. The purpose of this paper is to review and compare mosquito population dynamics, and weather conditions, in three ecologically different contexts (urban/semi-urban, rural/agricultural, natural) across four European countries (Italy, France, Serbia, Greece) with a history of WNV outbreaks. Local control strategies will be described as well. Improving our understanding of WNV ecology is a prerequisite step for appraising and optimizing vector control strategies in Europe with the ultimate goal to minimize the probability of WNV infection.

Highlights

  • West Nile virus (WNV) is an arthropod-borne pathogen transmitted by mosquitoes that was first isolated in 1937 from the blood of a febrile woman in the West Nile district of Uganda [1]

  • It was in 1958 when WNV was detected in Europe from a patient in Albania and since has been repeatedly detected in the continent with human and equine infections reported from many countries [2]

  • The temporal and spatial distribution of mosquito populations is shaped by a variety of environmental factors such as the availability, type and productivity of breeding sites, the climate and weather conditions together with anthropogenic factors such as the control methods including the management of breeding sites

Read more

Summary

Introduction

West Nile virus (WNV) is an arthropod-borne pathogen transmitted by mosquitoes that was first isolated in 1937 from the blood of a febrile woman in the West Nile district of Uganda [1]. It was in 1958 when WNV was detected in Europe from a patient in Albania and since has been repeatedly detected in the continent with human and equine infections reported from many countries [2]. Lineage 2 strains were initially isolated in 2004 (Hungary) and in 2008 (Austria) and for the first time caused a major epidemic of WNV infection in 2010 in Greece with 262 clinical human cases and 35 fatalities [3]. Outbreaks involving WNV lineage 2 have been reported in several European countries including Italy, Serbia and Greece

Objectives
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call