Abstract

Salinity is a widespread problem caused by an imbalance between rainfall and transpiration in the dryland cropping systems of southern Australia. The need to use more perennials has been identified and this paper examines the possibility of replacing annual with perennial pasture legumes and the germplasm available to do so. While lucerne is already used widely in eastern Australia it has only recently been adopted in the wheat belt of Western Australia. There are doubts about its adaptation to acid soils and to climates where summer rainfall is low and ambient temperatures are high. There is also a need to diversify the species available to reduce the likelihood of invasion by exotic diseases and insects. Several genera are likely to be of value in this respect, although few will be as widely adapted as lucerne. Perennial legumes are found in environments ranging from alpine to desert. Targeted collections of genera from the dry areas, especially where soils are acid, are likely to yield species of value. These may include perennial species of Astragalus, Hedysarum, Lotus, Onobrychis, Psoralea, and Trifolium. Some Australian genera, for example Swainsona, Glycine, and Cullen may also be of value. Most of these genera are from alkaline soils, and the need to cope with acid soils that are often high in free aluminium is seen to limit their use in southern Australia. However, since virtually nothing is known of the ecology and ecophysiology of species from the dry areas, it is possible that through selection and the use of adapted rhizobia, some at least may be of value in Australian conditions. Cropping in rotation with perennial legumes is likely to involve several changes in farming systems. It is impossible to predict their nature but it is essential that we understand what these changes are before the species are widely introduced. Account must also be taken of their ability to use water. It is entirely possible that perennials from dry areas are dormant in summer despite the fact that there is no evidence in the literature to this effect. It was concluded that although lucerne is suitable for phase farming, alternatives to lucerne are needed. They will have to match the water-using and nitrogen-fixing capacities of lucerne, and farming systems will be required that make full use of the new germplasm. Collaboration with institutions in the Mediterranean basin and elsewhere is needed and a beginning has been made in this direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.