Abstract

Global eradication of human Guinea worm disease (dracunculiasis) has been set back by the emergence of infections in animals, particularly domestic dogs Canis familiaris. The ecology and epidemiology of this reservoir is unknown. We tracked dogs using GPS, inferred diets using stable isotope analysis and analysed correlates of infection in Chad, where numbers of Guinea worm infections are greatest. Dogs had small ranges that varied markedly among villages. Diets consisted largely of human staples and human faeces. A minority of ponds, mostly <200 m from dog-owning households, accounted for most dog exposure to potentially unsafe water. The risk of a dog having had Guinea worm was reduced in dogs living in households providing water for animals but increased with increasing fish consumption by dogs. Provision of safe water might reduce dog exposure to unsafe water, while prioritisation of proactive temephos (Abate) application to the small number of ponds to which dogs have most access is recommended. Fish might have an additional role as transport hosts for Guinea worm, by concentrating copepods infected with worm larvae.

Highlights

  • Guinea worm Dracunculus medinensis is a nematode parasite that causes Guinea worm disease in humans

  • Alongside the near-absence of human cases, infections were detected in 1040 domestic dogs Canis familiaris and 25 domestic cats Felis catus in Chad, 11 dogs, five cats and one olive baboon Papio anubis in Ethiopia, and 18 dogs and two cats in Mali in 2018

  • Prior to re-emergence in 2010, no human cases of Guinea worm were reported in Chad for ten years [4], suggesting an unknown reservoir of infection in non-human animals and/or undetected infection in humans, though surveillance of the disease in humans was problematic at that time

Read more

Summary

Introduction

Guinea worm Dracunculus medinensis is a nematode parasite that causes Guinea worm disease (dracunculiasis) in humans. It was once widespread in Asia and Africa [1] but an eradication campaign has made impressive progress in reducing human cases from 3.5 million per annum in 21 countries in 1986, to only 28 in 2018, in Chad (17), South Sudan (10), and Angola (1) [2]. Prior to re-emergence in 2010, no human cases of Guinea worm were reported in Chad for ten years [4], suggesting an unknown reservoir of infection in non-human animals and/or undetected infection in humans, though surveillance of the disease in humans was problematic at that time. To eradicate Guinea worm, transmission of infection must be interrupted in non-human as well as human hosts [5]. Alongside civil insecurity in the remaining endemic areas, non-human animal infections are the major impediment to Guinea worm eradication [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call