Abstract
Spring blooms of bottom ice algae are a common feature of landfast congelation ice in polar regions. Because ice algae are usually associated with a substrate, their population dynamics can be followed with considerable confidence. Although ice algal dynamics are closely related to irradiance, their dynamics and distributions are influenced by other abiotic and biotic factors. Ice algal abundance varies horizontally over all scales examined. Factors such as grazing and nutrient availability may contribute to local and geographic differences. Loss terms for most sea ice assemblages are largely unquantified. Ice algal biomass is most concentrated near the ice-water interface in spring. Environmental factors affecting ice algal abundance and productivity are considered here, emphasizing recent results from several well-studied sites. Biomass accumulation, growth rates and productivity have been documented for spring blooms of bottom interstitial and sub-ice assemblages. On an areal basis biomass accumulation in bottom ice assemblages can be comparable with planktonic systems. At low ambient temperatures and irradiances average specific growth rates (≤ 0.25 d −1) and production rates (≤ 1.0 mg C mg Chl −1 h −1) for ice algae are low. Current methods of measuring productivity are compared. Results are consistently low but variable with little systematic difference among them. At present, apparent differences in productivity between bottom ice assemblages in the Arctic and Antarctic, or among different antarctic assemblages, are so confounded by methodological and other sources of variability that no firm differences can be detected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.