Abstract

Haloalkaliphilic microorganisms that grow optimally at high-pH and high-salinity conditions can be found in natural environments such as soda lakes. These globally spread lakes harbour interesting anaerobic microorganisms that have the potential of being applied in existing technologies or create new opportunities. In this review, we discuss the potential application of haloalkaliphilic anaerobic microbial communities in the fermentation of lignocellulosic feedstocks material subjected to an alkaline pre-treatment, methane production and sulfur removal technology. Also, the general advantages of operation at haloalkaline conditions, such as low volatile fatty acid and sulfide toxicity, are addressed. Finally, an outlook into the main challenges like ammonia toxicity and lack of aggregation is provided.

Highlights

  • The metabolic potential of anaerobic microorganisms has been exploited in a wide range of applications, like volatile fatty acids (VFAs), alcohols, H2 and methane production

  • Microbiological studies on soda lakes have been reviewed by Sorokin et al (2014; 2015a) reviews on application of haloalkaliphilic microorganisms on nitrogen cycle, sulfide oxidation, heavy metals removal, biofuel production and enzyme production are available (Horikoshi 1999; Zhao et al 2014)

  • In this mini-review, research focused on potential application of anaerobic haloalkaliphilic microorganisms in fermentation of lignocellulosic feedstocks, methane production and sulfur removal technology will be reviewed

Read more

Summary

Ecology and application of haloalkaliphilic anaerobic microbial communities

This article is published with open access at Springerlink.com

Introduction
Anaerobic digestion of lignocellulosic feedstocks
Methane production
Optimum pH
Ammonia toxicity
Lack of aggregation
Operational challenges
Conclusions and future prospects

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.