Abstract

Nature development in The Netherlands often is planned on contaminated soils and sediments of former agricultural land and in floodplain areas; however, this contamination may present a risk to wildlife species desired at those nature development sites. Specific risk assessment methods are needed, because toxicological information is lacking for most wildlife species. The vulnerability of a species is a combination of its potential exposure, sensitivity to the type of pollutant, and recovery capacity. We developed a new method to predict ecological vulnerability in wildlife using autecological information. The analysis results in an ordinal ranking of vulnerable species. The method was applied to six representative contaminants: copper and zinc (essential metals, low to medium toxicity), cadmium (nonessential metal, high toxicity), DDT (persistent organic pesticide, high toxicity), chlorpyrifos (persistent organophosphate insecticide, high toxicity), and ivermectin (persistent veterinary pharmaceutical, low to medium toxicity). High vulnerability to the essential metals copper and zinc was correlated with soil and sediment habitat preference of a species and with r-strategy (opportunistic strategy suited for unstable environments). Increased vulnerability to the bioaccumulating substances cadmium and DDT was correlated with higher position of a species in the food web and with life span and K-strategy (equilibrium strategy suited for stable environments). Vulnerability to chlorpyrifos and ivermectin was high for species with a preference for soil habitats. The ecological vulnerability analysis has potential to further our abilities in risk assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call