Abstract
Variation in biological communities is a consequence of stochastic and deterministic factors. Examining the relative importance of these factors helps to understand variation in the whole biodiversity in a region. We examined the roles of stochastic and deterministic factors in structuring macroinvertebrate communities in high-latitude streams across two seasons. We predicted that if communities are the result of deterministic environmental filtering processes, the communities should show strong association with environmental variables, as taxa would be selected according to stream environmental conditions. However, if communities are driven by stochastic factors, they should show strong association with spatial variables, as the distribution of taxa in communities would be driven by spatially related dispersal factors. We studied these predictions by calculating the degree of uniqueness of the streams in terms of their taxonomic and functional community compositions and by modelling the resulting index values using spatial and environmental variables. Our results supported the first prediction where the communities are more influenced by the environmental filtering processes, although indications of the effect of spatial processes in structuring the communities were present especially in autumn. High-latitude stream communities also seem to be sensitive to environmental changes, as even small changes in environment were enough to affect the ecological uniqueness of the streams. These findings highlight the vulnerability of northern streams in the face of the climate change. To maintain biodiversity in high-latitude catchments, it would be important to protect varying habitat conditions, which are the main forces affecting the ecological uniqueness of the streams.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.