Abstract

Roughly 10% of the Earth’s surface is permanently covered by glaciers and ice sheets and in mountain ecosystems, this proportion of ice cover is often even higher. From an ecological perspective, ice-dominated ecosystems place harsh controls on life including cold temperature, limited nutrient availability, and often prolonged darkness due to snow cover for much of the year. Despite these limitations, glaciers and perennial snowfields still support diverse, primarily microbial communities, though macroinvertebrates and vertebrates are also present. The availability and mass balance of key elements [(carbon (C), nitrogen (N), phosphorous (P)] are known to influence the population dynamics of organisms, and ultimately shape the structure and function of ecosystems worldwide. While considerable attention has been devoted to patterns of existing biodiversity in mountain cryosphere-influenced ecosystems, the ecological stoichiometry of these habitats has been less studied. Understanding this emerging research arena is particularly pressing in light of the rapid recession of glaciers and perennial snowfields worldwide. In this review, we synthesize existing knowledge of ecological stoichiometry, nutrient availability, and food webs in the mountain cryosphere (specifically glaciers and perennial snowfields). We use this synthesis to develop more general understanding of nutrient origins, distributions, and trophic interactions in the mountain cryosphere. We focus our efforts on three major habitats: glacier surfaces (supraglacial), beneath glaciers (subglacial), and adjacent downstream habitats (i.e., glacier-fed streams and lakes). We compare nutrient availability in mountain cryosphere habitats to comparable habitats on continental ice sheets (e.g., Greenland and Antarctica) and show that, in general, nutrient levels are substantially different between the two. Next, we discuss how ongoing climate warming will alter nutrient and trophic dynamics in mountain glacier-influenced ecosystems. We conclude by highlighting the pressing need for future studies to understand spatial and temporal stoichiometric variation in the mountain cryosphere, ideally with direct comparisons to continental ice sheets, before these imperiled habitats vanish completely.

Highlights

  • 75% of the freshwater on Earth is frozen at any given time (Jain, 2014; Talalay et al, 2014)

  • We address two stoichiometric questions: (1) What is the origin, availability, and variation of C, N, and P? What dynamics of stoichiometric ratios exist? (2) To what extent are complex food webs present? What does stoichiometry mean for their trophic interactions and biogeochemical cycling? As part of this, we explicitly test the degree to which nutrient concentrations in the mountain cryosphere are comparable to those measured for continental ice sheets to better understand how insight gained from ice sheets can be translated to mountain systems

  • Frozen environments place severe constraints on life, the mountain cryosphere harbors complex, dynamic biological communities which often experience some degree of nutrient limitation

Read more

Summary

Introduction

75% of the freshwater on Earth is frozen at any given time (Jain, 2014; Talalay et al, 2014). Spatial links exist among cryospheric habitats; for instance, primary production and atmospheric deposition occuring on the surface of glaciers (supraglacial zone) influences stoichiometric processes beneath them in the subglacial zone.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.