Abstract
Providing safe drinking water free of heavy metal ions like iron and oxyanions like sulfate has become a worldwide issue. Starch, as one of the widely cheapest and available biomaterials, has demonstrated its capability to adsorb heavy metal ions from water in various scientific research, but in low adsorption rates. Therefore, this paper aims to prepare a biopolymer based on a starch–chitosan blend to raise the adsorption efficiency of starch. Two types of chitosan were used to modify potato starch (ps): low molecular chitosan (ch60) and high molecular chitosan (ch4000). Nano potato starch (n.ps) was prepared from potato starch and was also modified with both chitosans. The surface property, the morphology, the particle size, and the structure of the samples were analyzed. Moreover, the investigation of the samples by the zeta potential and charge density were evaluated to determine the charge of the adsorbents’ surface. Furthermore, the pseudo first order (PFO) and pseudo second order (PSO) were employed to examine the adsorption kinetic. The adsorption isotherms of Fe2+/3+ and SO42− were fitted employing Langmuir, Sips, and Dubinin-Radushkevich adsorption models. The maximum achieved sorption capacities from the FeSO4 solution for Fe2+/3+ were as follows: 115 mg/g for n.ps & ch4000, 90 mg/g for ps & ch4000, 80 mg/g for n.ps & ch60, and 61 mg/g for ps & ch60. Similarly, for SO42−, it was 192 mg/g for n.ps & ch4000, 155 mg/g for n.ps & ch60, 137 mg/g for ps & ch4000, and 97 mg/g for ps & ch60.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.