Abstract

Organochlorine pesticides (OCPs), chlorinated hydrocarbon derivatives extensively used in agriculture and chemical industry, have been banned for several decades in most developed countries. However, OCPs act as persistent organic pollutants due to their semi-volatility nature, high ability for wide range transportation and faster bioaccumulation, and thus it has remained as a topical global concern. This study focuses on OCP distributions, sources and associated ecological risks in the globally important OCP source-sink regions of South China Sea (SCS) and East China Sea (ECS). Given the co-exposure of multiple OCPs that undermine the classical risk assessment of single OCP species, a two-tier mixture risk assessment approach has been employed with explicit consideration of seasonal changes and phase-partitioning effects. The results indicate existence of multiple sources varied across the seasons and between the dissolved and particulate phases. Potential sources include the current-use of lindane or historical use of technical HCH, input of technical DDTs, long-range atmospheric transport, and deposition of HCB from land surfaces. There are no wide high-risk zones. Dissolved HCB and DDTs have posed low-to-medium levels of risks broadly distributed across the seasons. Relatively greater risks are observed in summer in the both dissolved and particulate phases. The study has shown the importance of considering mixture risk assessments with the effects of phase-partitioning and seasonal changes for efficient oceanic risk management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.