Abstract

Heavy metals (HMs) in agricultural land have caused serious environmental problems, resulting in severe contamination of the food chain and posing potential health threats. This study aims to investigate the pollution levels and potential ecological risks of HMs in farmland soils in central China, taking into account atmospheric deposition. Several indices were used to assess the status of HMs and compare surface soil with deeper soil. Descriptive statistics, Pearson correlation, and UMAP clustering methods were utilized to identify the characteristics of HMs. Additionally, stepwise linear regression models were employed to quantify the contributions of different variables to the potential ecological risks of HMs. The results showed that the average content of Zn in surface soil (289.41 ± 87.72 mg/kg) was higher than in the deeper soil (207.62 ± 37.81 mg/kg), and similar differences were observed in the mean values of related Igeo (1.622 ± 0.453 in surface soil and 1.183 ± 0.259 in deeper soil) and PEI (0.965 ± 0.292 in surface soil and 0.692 ± 0.126 in deeper soil) indices. This indicates that surface soil is more heavily polluted. The UMAP results confirmed the high variability of HMs in the surface soil, while PCA results suggested the importance of pollution and ecological risk indices. The stepwise linear model revealed that different variable structures contribute differently to the risk. In conclusion, Cr and Zn were found to be the major contaminants in the local farmland soil, with higher concentrations in the surface soil. The geoaccumulation and total potential ecological risk were classified as low risk. High variability of HMs was observed in the surface soil. Therefore, HM-related pollution indices and ecological risk indices are important for assessing the contamination status of local HMs. The local potential ecological risk can be attributed to specific heavy metals, each of which can have different effects on the local ecological risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.