Abstract

The bank vole (Myodes glareolus) is the natural host of Puumala virus (PUUV) in vast areas of Europe. PUUV is one of the hantaviruses which are transmitted to humans by infected rodents. PUUV causes a general mild form of hemorrhagic fever with renal syndrome (HFRS) called nephropathia epidemica (NE). Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover influences disease transmission by controlling both the spatial distribution of vectors or hosts, as well as by facilitating the human contact with them. In this study the use of ecological niche modelling (ENM) for predicting the geographical distribution of bank vole population on the basis of spatial climate information is tested. The Genetic Algorithm for Rule-set Prediction (GARP) is used to model the ecological niche of bank voles in Western Europe. The meteorological data, land cover types and geo-referenced points representing the locations of the bank voles (latitude/longitude) in the study area are used as the primary model input value. The predictive accuracy of the bank vole ecologic niche model was significant (training accuracy of 86%). The output of the GARP models based on the 50% subsets of points used for testing the model showed an accuracy of 75%. Compared with random models, the probability of such high predictivity was low (χ2 tests, p < 10−6). As such, the GARP models were predictive and the used ecologic niche model indeed indicates the ecologic requirements of bank voles. This approach successfully identified the areas of infection risk across the study area. The result suggests that the niche modelling approach can be implemented in a next step towards the development of new tools for monitoring the bank vole’s population.

Highlights

  • Fifteen emerging zoonotic or vector-borne infections with increasing impact on humans in Europe were identified during the period 2000–2006

  • The output of the GARP models based on the 50% subsets of points used for testing the model showed an accuracy of

  • In this study we managed to produce the map of potential geographical distribution of bank voles in Western Europe based on the occurrence data points of bank voles and climate and land cover maps

Read more

Summary

Introduction

Fifteen emerging zoonotic or vector-borne infections with increasing impact on humans in Europe were identified during the period 2000–2006. Global climate change may be a major contributor to the spread of these zoonotic diseases [1,2]. Rodent borne hantavirus infections are part of this list [2]. Puumala virus (PUUV), hosted by the bank vole (Myodes glareolus), is such a hantavirus. It is common over vast areas of Europe and causes a general mild form of HFRS called nephropathia epidemica (NE) [3]. Human hantavirus epidemics have often been explained by bank vole abundance [4,5]. Climate can influence host defence, vectors, pathogen and habitat [1]. Studies of the effects of local climatic variability have been important in revealing the influences of weather condition on plant phenology, it is demonstrated that large-scale climatic variability can influence the phenology of plants (e.g., [6])

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call