Abstract

The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including description of biological phosphorus removal, physical-chemical processes, hydraulics, and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex two-dimensional (2D)/three-dimensional (3D) dynamic numerical models. Plant-wide modeling is set to advance further the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time-consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise. Efficient and good modeling practice therefore requires the use of a proper set of guidelines, thus grounding the modeling studies on a general and systematic framework. Last but not least, general limitations of WWTP models – more specifically activated sludge models – are introduced since these define a boundary of validity for WWTP model applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.