Abstract

Antibiotic resistome has led to growing global threat to public health. Rare earth elements play important roles in modern society and mining activity for them has caused serious impact on soil ecosystems. However, antibiotic resistome in, especially, ion-adsorption rare earth-related soils is still poorly understood. In this work, soils were collected from ion-adsorption rare earth mining areas and adjacent regions of south China and metagenomic analysis was employed for profile, driving factors and ecological assembly of antibiotic resistome in the soils. Results show prevalence of antibiotic resistance genes conferring resistance to tetracycline/fluoroquinolone (adeF), peptide (bcrA), aminoglycoside (rpsL), tetracycline (tet(A)) and mupirocin (mupB) in ion-adsorption rare earth mining soils. Profile of antibiotic resistome is accompanied by its driving factors, i.e., physicochemical properties (La, Ce, Pr, Nd and Y of rare earth elements in 12.50–487.90 mg kg−1), taxonomy (Proteobacteria, Actinobacteria) and mobile genetic elements (MGEs, plasmid pYP1, Transposase_20). Variation partitioning analysis and partial least-squares-path modeling demonstrate that taxonomy is the most important individual contributor and pose most direct/indirect effect to antibiotic resistome. Further, null model analysis reveals stochastic processes as dominant ecological assembly of antibiotic resistome. This work advances our knowledge on antibiotic resistome with emphasis on ecological assembly in ion-adsorption rare earth-related soils for ARGs mitigation, mining management and mine restoration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call