Abstract

The ecological risks of surfactants have been largely neglected because of their low toxicity. Multiscale studies have indicated that even if a pollutant causes no acute toxicity in a test species, it may alter interspecific interactions and community characteristics through sublethal impacts on test organisms. Therefore, we investigated the lethal and sublethal responses of the plankton species Scenedesmus quadricauda, Chlorella vulgaris, and Daphnia magna, to surfactant Tween-80. Then, high-scale responses in grazer life-history traits and stability of the D. magna-larval damselfly system were further explored. The results showed that discernible adverse effects on the growth or survival of the three plankton species were evident only at exceptionally high concentrations (≥100 mg L−1). However, 10 mg L−1 of Tween-80 notably affected the MDA concentration in grazer species, simultaneously displaying a tendency to diminish grazer's heartbeat and swimming frequency. Furthermore, Tween-80 reduced the grazer reproductive capacity and increased its predation risk by larval damselflies, which ultimately jeopardized the stability of the D. magna-larval damselfly system at much lower concentrations (10–100 fold lower) than the individual-scale responses. This study provides evidence that high-scale traits are far more sensitive to Tween-80, compared with individual-scale traits for plankton organisms, suggesting that the ecological risks of Tween-80 demand careful reassessment. SynopsisThe concentration of Tween-80 needed to induce changes in community characteristics is markedly lower than that needed to produce individual-scale consequences. Thus, high-scale analyses have broad implications for understanding the hazardous effects of surfactants compared with an individual-scale analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call