Abstract

BackgroundDisentangling the drivers of genetic differentiation is one of the cornerstones in evolution. This is because genetic diversity, and the way in which it is partitioned within and among populations across space, is an important asset for the ability of populations to adapt and persist in changing environments. We tested three major hypotheses accounting for genetic differentiation—isolation-by-distance (IBD), isolation-by-environment (IBE) and isolation-by-resistance (IBR)—in the annual plant Arabidopsis thaliana across the Iberian Peninsula, the region with the largest genomic diversity. To that end, we sampled, genotyped with genome-wide SNPs, and analyzed 1772 individuals from 278 populations distributed across the Iberian Peninsula.ResultsIBD, and to a lesser extent IBE, were the most important drivers of genetic differentiation in A. thaliana. In other words, dispersal limitation, genetic drift, and to a lesser extent local adaptation to environmental gradients, accounted for the within- and among-population distribution of genetic diversity. Analyses applied to the four Iberian genetic clusters, which represent the joint outcome of the long demographic and adaptive history of the species in the region, showed similar results except for one cluster, in which IBR (a function of landscape heterogeneity) was the most important driver of genetic differentiation. Using spatial hierarchical Bayesian models, we found that precipitation seasonality and topsoil pH chiefly accounted for the geographic distribution of genetic diversity in Iberian A. thaliana.ConclusionsOverall, the interplay between the influence of precipitation seasonality on genetic diversity and the effect of restricted dispersal and genetic drift on genetic differentiation emerges as the major forces underlying the evolutionary trajectory of Iberian A. thaliana.

Highlights

  • Disentangling the drivers of genetic differentiation is one of the cornerstones in evolution

  • We genotyped 240 genome-wide Single nucleotide polymorphism (SNP) in 1172 individuals collected from 278 populations (Fig. 1a) to determine the genetic diversity of A. thaliana in the Iberian Peninsula

  • This study dissected the complexity of geographic, environmental and evolutionary factors contributing to the genetic differentiation among A. thaliana populations, while illustrating the power of dense collections to disentangle complex biological questions [8, 28, 30, 49, 63, 75, 76]

Read more

Summary

Introduction

Disentangling the drivers of genetic differentiation is one of the cornerstones in evolution This is because genetic diversity, and the way in which it is partitioned within and among populations across space, is an important asset for the ability of populations to adapt and persist in changing environments. In the classical IBD, genetic differentiation among populations exhibits a positive relationship with geographic distance [13,14,15,16,17,18]. In this case, dispersal limitation and genetic drift determine the greater genetic differentiation at larger distances. Quantifying the contribution of limited dispersal and genetic drift to genetic differentiation is not a straightforward task, as we largely ignore the actual extent of dispersal, the effective population sizes conditioning genetic drift, and the effects of historical factors shaping the genetic relationships among populations [20]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.