Abstract

Four major species of Chinese carp, namely black carp (Mylopharyngodon piceus), grass carp (Ctenopharyngodon idellus), silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis), are important economic freshwater fish varieties in China. They primarily inhabit and breed in the Yangtze River. Unfortunately, the construction and operation of the Gezhouba Dam and the Three Gorges Dam have dramatically changed the hydrodynamic conditions in the middle reaches of the Yangtze River, leading to a sharp decline in the reproduction rates of these carp. The egg abundance of the four species of carp downstream from the Three Gorges Dam reached 8.35 billion in 1965, but abundance during 2005–2012 was only 0.25 billion. One of the main reasons was that the hydrodynamic conditions of the spawning ground could not meet the four species’ breeding requirements. However, due to the limitations of traditional detection tools, the spawning characteristics of these four species of carp were still unclear. In this study, the ultrasonic telemetry and a three–dimensional hydrodynamic model were utilized to build the habitat suitability index (HSI) curves for the four species of carp. The habitat suitability model was then built based on HSI curves to assess spawning habitat quantity under different flow conditions. Finally, the habitat suitability model in the Yidu spawning ground was validated using 32 groups of sampling data in 2015 and 2017. The statistical results showed that the most suitable velocity ranged from 0.78 m/s to 0.93 m/s. The most suitable water depth ranged from 14.56 m to 16.35 m, and the most suitable Froude number ranged from 0.049 to 0.129. The habitat suitability model simulation results indicated that when the discharge was between 15,000 m3/s and 21,300 m3/s, the weighted usable area (WUA) values in both the Yidu and Zhicheng spawning grounds would remain at a high level. The validation results showed that most spawning activities occurred at a high level of WUA, and that the daily spawning egg numbers increased with the WUA value. Therefore, discharges of between 15,000 m3/s and 21,300 m3/s could be recommended as ecological operation target flows. We propose a feasible ecological operation scheme by setting the initial flow at 15,000 m3/s and maintaining the daily discharge increase at 1500 m3/s for 4 days.

Highlights

  • The four major species of Chinese carp, i.e., black carp (Mylopharyngodon piceus), grass carp (Ctenopharyngodon idellus), silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis), play important roles in both cultivation and capture fishery nationwide [1]. these four carp species are widely distributed throughout many Chinese rivers, the Yangtze River is the most important habitat [2]

  • The statistics of positioning data of the four major species of Chines carp in the Yidu and Zhicheng spawning grounds were made during two ecological operations

  • Most spawning activities occurred at a high level of weighted usable area (WUA), and the daily spawning egg numbers increased with the WUA value

Read more

Summary

Introduction

The four major species of Chinese carp, i.e., black carp (Mylopharyngodon piceus), grass carp (Ctenopharyngodon idellus), silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis), play important roles in both cultivation and capture fishery nationwide [1]. These four carp species are widely distributed throughout many Chinese rivers, the Yangtze River is the most important habitat [2]. The spawning grounds of the four major species of Chinese carp are located mainly in the upper and middle reaches of the Yangtze River. There were 36 spawning grounds distributed in the main stream of the Yangtze River, which were located from Chongqing to Pengze within a range of 1695 km [4]. The annual total egg production in these spawning grounds was over 100 billion [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call