Abstract

The regeneration niche is commonly partitioned along a gradient from shade-tolerant to shade-intolerant species to explain plant community assembly in forests. We examined the shade tolerance of tree seedlings in a subtropical coastal forest to determine whether the ecological filtering effect of a dominant, synchronously monocarpic herb (Isoglossa woodii) selects for species at either end of the light response continuum during the herb's vegetative and reproductive phases. Photosynthetic characteristics of seedlings of 20 common tree species and the herb were measured. Seedlings were grown in the greenhouse at 12-14% irradiance, and their light compensation points measured using an open-flow gas exchange system. The light compensation points for the tree species were low, falling within a narrow range from 2.1 ± 0.8 μmol m(-2) s(-1) in Celtis africana to 6.4 ± 0.7 μmol m(-2) s(-1) in Allophylus natalensis, indicating general shade tolerance, consistent with a high and narrow range of apparent quantum yield among species (0.078 ± 0.002 mol CO(2) mol(-1) photon). Rates of dark respiration were significantly lower in a generalist pioneer species (Acacia karroo) than in a forest pioneer (C. africana), or in late successional phase forest species. We argue that the general shade tolerance, and phenotypic clustering of shade tolerance, in many tree species from several families in this system, is a result of ecological filtering by the prevailing low light levels beneath the I. woodii understorey, which excludes most light-demanding species from the seedling community.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call