Abstract

AbstractConvergent evolution is often attributed to adaptation of form to function, but it can also result from ecological filtering, exaptation, or nonaptation. Testing among these possibilities is critical to understanding how and why morphological similarities emerge independently in multiple lineages. To address this challenge, we combined multiple preexisting phylogenetic methods to jointly estimate the habitats and morphologies of lineages within a phylogeny. We applied this approach to the invasions of snakes into the marine realm. We utilized a data set for 1,243 extant snake species consisting of newly compiled biome occupancy information and preexisting data on reproductive strategy, body mass, and environmental temperature and elevation. We find evidence for marine clades arising from a variety of aquatic and terrestrial habitats. Furthermore, there is strong evidence of ecological filtering for nonmarine ancestors that were already viviparous, had slightly larger-than-average body sizes, and lived in environments with higher-than-average temperatures and lower-than-average elevations. In aggregate, similarities among independent lineages of marine snakes result from a combination of exaptation and strong ecological filtering. Strong barriers to entry of new habitats appear to be more important than common adaptations following invasions for producing similarities among independent lineages invading a shared, novel habitat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call