Abstract

PURPOSE: This work aimed to study the effect of long-term polymetallic contamination on the state and parameters of soil bacterial communities, including the abundance of different groups of culturable bacteria and the activity of nitrification. MATERIALS AND METHODS: Monitoring plots were located in the dry lake and surrounding area, which had been formerly used for the discharge of industrial waste. The soils in the 16 plots were characterized by extremely high levels of heavy metal pollution. This study evaluated the main soil physicochemical properties by various methods, total metal contents by X-ray analysis, mobile metal content by atomic absorption spectrophotometry, the abundance of chosen groups of culturable bacteria by inoculation on solid media, and nitrification activity from ammonium and nitrite oxidation rates. RESULTS AND DISCUSSION: High adaptation capacity of microbial communities to long-term pollution was revealed through marked lack of decrease in the abundance of some of the bacterial groups in soils with high contamination levels. Among the bacteria determined by the colony count method, copiotrophic and spore-forming bacteria were the least sensitive to contamination, and actinomycetes were the most sensitive. The high levels of soil pollution with heavy metals had pronounced adverse effects on nitrification activity. The decrease in activity was strongly correlated with pollutant concentrations. The oxidation of nitrite was shown to be more affected by pollution that the oxidation of ammonium. CONCLUSIONS: Some groups and parameters of culturable microorganisms can be used for soil status estimation under pollution conditions even though they are only a small fraction of the microbial community. The most sensitive parameter was the nitrification rate, while the number of actinomycetes was found to be most promising parameter among the groups of bacteria determined by plate counts. The use of sensitive groups of culturable microorganisms for bioindication purposes is a method, which may provide a cheap and sufficiently reliable tool for large-scale soil monitoring studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.