Abstract
Diatom blooms can significantly affect the succession of microbial communities, yet little is known about the assembly processes and interactions of microbial communities during autumn bloom events. In this study, we investigated the ecological effects of an autumn diatom bloom on prokaryotic communities (PCCs) and microeukaryotic communities (MECs), focusing on their assembly processes and interactions. The PCCs were largely dominated by Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria, and Flavobacteria, while the MECs primarily included Diatomea, Dinoflagellata, and Chlorophyta. The succession of both PCCs and MECs was mainly driven by thisdiatom bloom and environmental factors, such as nitrate and silicate. Null modeling revealed that homogeneous selection had a more pronounced impact on the structure of PCCs compared with that of MECs. In particular, drift and dispersal limitation cannot be neglected in the assembly processes of MECs. Co-occurrence network analyses showed that Litorimicrobium, Cercozoa, Marine Group I (MGI), Cryptomonadales, Myrionecta, and Micromonas may affect the bloom process. In summary, these results elucidated the complex, robust interactions and obviously distinct assembly mechanisms of PCCs and MECs during a diatom bloom and extend our current comprehension of the ecological mechanisms and microbial interactions involved in an autumn diatom bloom process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.