Abstract

Differences in individual behaviour affect social interactions and contribute to the spatial structuring of animal populations. However, disturbance should also affect spatial networks by altering habitat heterogeneity and resource availability. Variation in resource availability should perturb the frequency and nature of social and ecological interactions within a population by affecting the spatial distribution of individuals. In disturbed habitats where resources are limiting, spatial relationships should reflect behavioural differences among individuals, with higher-quality resources controlled by dominant individuals. In contrast, all individuals may exploit preferred resources in resource-rich habitats. Environmental variation and population reorganization may also result in variation in morphological, behavioural and ecological traits, which ultimately affect fitness. We addressed these considerations for male tree lizards (Urosaurus ornatus) at three sites that differ in levels of disturbance. The habitats at these localities differed in the availability of live trees, the preferred microhabitat of U.ornatus. In addition, male U.ornatus exhibits a polymorphism in dewlap colour linked with differences in aggression, which should influence their position in a network and access to resources. We applied a network framework to characterize the spatial organization of male morphs at each site and quantified male aggressive behaviour in the laboratory. We also compared body size, body condition, number of bite marks, parasite load and the microhabitat use and diet, of males among the sites. We detected no significant differences in spatial network structure between unburned and infrequently burned sites. However, at a frequently burned site, the network shifted towards geographically closer, heteromorphic male neighbour associations. Males at this site were also larger, more aggressive and had more bite marks but fewer parasites than males at the other sites. Moreover, we detected divergence in microhabitat use and diet among the morphs at the frequently burned site that reflected the shift in spatial network structure and differences in morph behaviour. That is, only more aggressive morphs usurped trees and consumed prey from higher trophic levels. We conclude that environmental variation may influence animal spatial network structure. Jointly, behavioural and environmental variation may promote despotic social dynamics and ecological divergence in resource-limited habitats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.