Abstract

Ecosystems with a mix of native and introduced species are increasing globally as extinction and introduction rates rise, resulting in novel species interactions. While species interactions are highly vulnerable to disturbance, little is known about the roles that introduced species play in novel interaction networks and what processes underlie such roles. Studying one of the most extreme cases of human-modified ecosystems, the island of O'ahu, Hawaii, we show that introduced species there shape the structure of seed dispersal networks to a greater extent than native species. Although both neutral and niche-based processes influenced network structure, niche-based processes played a larger role, despite theory predicting neutral processes to be predominantly important for islands. In fact, ecological correlates of species' roles (morphology, behavior, abundance) were largely similar to those in native-dominated networks. However, the most important ecological correlates varied with spatial scale and trophic level, highlighting the importance of examining these factors separately to unravel processes determining species contributions to network structure. Although introduced species integrate into interaction networks more deeply than previously thought, by examining the mechanistic basis of species' roles we can use traits to identify species that can be removed from (or added to) a system to improve crucial ecosystem functions, such as seed dispersal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.