Abstract

One of the most famous examples of adaptive radiation is that of the Galápagos finches, where skull morphology, particularly the beak, varies with feeding ecology. Yet increasingly studies are questioning the strength of this correlation between feeding ecology and morphology in relation to the entire neornithine radiation, suggesting that other factors also significantly affect skull evolution. Here, we broaden this debate to assess the influence of a range of ecological and life-history factors, specifically habitat density, migration, and developmental mode, in shaping avian skull evolution. Using 3D geometric morphometric data to robustly quantify skull shape for 354 extant species spanning avian diversity, we fitted flexible phylogenetic regressions and estimated evolutionary rates for each of these factors across the full data set. The results support a highly significant relationship between skull shape and both habitat density and migration, but not developmental mode. We further found heterogenous rates of evolution between different character states within habitat density, migration, and developmental mode, with rapid skull evolution in species that occupy dense habitats, are migratory, or are precocial. These patterns demonstrate that diverse factors affect the tempo and mode of avian phenotypic evolution and that skull evolution in birds is not simply a reflection of feeding ecology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.