Abstract

Understanding the ecology and evolution of tick-borne parasites is the foundation for preventing and managing tick-borne diseases. Tick-borne diseases such as Lyme borreliosis, are an emerging health threat in America, Europe, and Asia. Certain strains of Borrelia burgdorferi (the etiological agent of Lyme borreliosis) sampled in nature appear to be rapidly cleared by murine hosts. These strains, unlike their inhost-persistent counterparts, are unlikely to manifest severe disease. Their emergence and abundance in North America is unclear. Understanding why strains adopt a persistent or rapid-clearing phenotype is a crucial question in Lyme biology. Using dynamic, data-driven infectivity profiles in a competitive, two-strain mathematical model, we show that these phenotypes are differentially favored under distinct ecological conditions (i.e. vector phenology). We argue these two phenotypes represent distinct parasite life-history strategies, impacting regional Lyme disease severity across North America.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.