Abstract

Gold mining is a major source of metal and metalloid emissions into the environment. Studies were carried out in Krugersdorp, South Africa, to evaluate the ecological and human health risks associated with exposure to metals and metalloids in mine tailings contaminated soils. Concentrations of arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn) in soil samples from the area varied with the highest contamination factors (expressed as ratio of metal or metalloid concentration in the tailings contaminated soil to that of the control site) observed for As (3.5x102), Co (2.8x102) and Ni (1.1x102). Potential ecological risk index values for metals and metalloids determined from soil metal and metalloid concentrations and their respective risk factors were correspondingly highest for As (3.5x103) and Co (1.4x103), whereas Mn (0.6) presented the lowest ecological risk. Human health risk was assessed using Hazard Quotient (HQ), Chronic Hazard Index (CHI) and carcinogenic risk levels, where values of HQ > 1, CHI > 1 and carcinogenic risk values > 1×10−4 represent elevated risks. Values for HQ indicated high exposure-related risk for As (53.7), Cr (14.8), Ni (2.2), Zn (2.64) and Mn (1.67). Children were more at risk from heavy metal and metalloid exposure than adults. Cancer-related risks associated with metal and metalloid exposure among children were also higher than in adults with cancer risk values of 3×10−2 and 4×10−2 for As and Ni respectively among children, and 5×10−3 and 4×10−3 for As and Ni respectively among adults. There is significant potential ecological and human health risk associated with metal and metalloid exposure from contaminated soils around gold mine tailings dumps. This could be a potential contributing factor to a setback in the health of residents in informal settlements dominating this mining area as the immune systems of some of these residents are already compromised by high HIV prevalence.

Highlights

  • Heavy metals and metalloids pollution of the environment remains a worldwide concern because of the negative effects that exposure to heavy metals can pose on various ecosystem and human receptors

  • The mean particle sizes of soil samples from the three sites which varied between 0.4 μm to 355.7 μm (Fig 3) were smaller compared to particle sizes of soils from the control site (0.1 μm to 525.8 μm)

  • The median particle diameter of the samples according to values of D(v,0.5) were 44.8 μm, 11.3 μm, 56.4 μm and 31.7 μm for the control site, sites ranged from 1.3 to 345 (Site 1), Site 2 and Site 3 respectively

Read more

Summary

Introduction

Heavy metals and metalloids pollution of the environment remains a worldwide concern because of the negative effects that exposure to heavy metals can pose on various ecosystem and human receptors. Heavy metals and metalloids are introduced into the environment from geogenic (weathering) and anthropogenic sources including waste disposal, agricultural activities, vehicular traffic, petroleum refineries, paint industries, photography, and mining [1]. According to Kaasalainen and Yli-Halla [2], heavy metals emitted from anthropogenic origins including mining activities are highly mobile in the soil environment with increased potential to cause ecological and human health complications compared to those of geogenic origins. Gold (Au) mining as a source of heavy metal contamination in soils has been documented in several countries including Korea [3], USA [4], Sultanate of Oman [6], Ghana [7], Canada [8] and South Africa [9]. Processing of ore bodies and disposal of mine tailings and wastewater rich in heavy metals and metalloids are the main origins of metal and metalloid release from Au mines [10, 11]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.