Abstract

Polycyclic aromatic hydrocarbons (PAHs) from chemical plants can cause serious pollution of surrounding agricultural soils. A comprehensive study of agricultural soils was conducted in the vicinity of a chemical plant in China to characterize the soil PAH concentration, as well as their composition and sources. Human health and a screening–level ecological risk assessment were conducted for PAH contamination in agricultural soils. The results showed that the total concentrations of 16 priority PAHs ranged from 250.49 to 9387.26 ng g−1, with an average of 2780.42 ng g−1. High molecular weight PAHs (four to six rings) were the dominant component, accounting for more than 60% of all PAHs. Principal component analysis (PCA) and positive matrix factorization model (PMF) suggested that diesel emissions, coal combustion, coke ovens, and fuel combustion and gasoline emissions were the main sources of PAHs in agricultural soils. The ecological risk assessment results based on the effects range–low (ERL), the effects range–median (ERM), and the ecological screening levels (ESL) indicated that the exposure to ∑PAH16 was >ERL, >ERM, and ≥ERL and <ERM at 21.9, 0, and 21.9% of the soil sampling stations, the exposure to ∑PAH16 was >ESL at 78.1% of the soil sampling stations, and could induce biological effects in mammals. The Bapeq concentrations posed a potential carcinogenic risk to humans. Further risk management and control of soil PAHs in these agricultural soils is required to ensure the safety of the biocoenosis and human health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.