Abstract

Steppe soils of a small industrialized city with moderate anthropogenic impact for example Krasny Kut, Saratov region were analysed to ascertain their ecological and functional state. In the course of this work, the concentration of heavy metals (Zn, Cu, Pb, Ni, Cr and Cd) was determined in the soil samples, including the hazard coefficient (Kо) and the total contamination coefficient (Zc). Magnetic susceptibility, magnetic coefficient (Kmag), thermomagnetic effect (dk) of the soil samples were analysed together with the activity of soil enzymes (dehydrogenases, catalases, peroxidases and invertases). Using ecological and geochemical analytical methods, a widespread excess of maximum permissible concentration (MPC) of mobile forms Ni, Pb, Cu and Zn was recorded in the soil samples of Krasny Kut, and a single excess of MPC was observed for Cr and Cd. According to Zc indicator values, 4 samples were classified as soils with moderately dangerous levels of contamination and 2 samples with dangerous levels of contamination. Using petromagnetic analysis, a few samples were observed to contain a moderate amount of introduced technogenic magnetic particles and one sample with a hazardous amount of introduced technogenic magnetic particles. Medium, high and very high levels of dehydrogenase, catalase, peroxidase and invertase activities were recorded in the soil samples, indicating the absence of ecotoxicants inhibiting the enzymes. The observed peculiarities in the ecological and functional state of soils, representative of the steppe zone of the Eastern part of the European territory of Russia will be required for monitoring, reducing and forecasting the anthropogenic burden on soil ecosystems.

Highlights

  • Due to an exponential growth in industrial production and an increase in anthropogenic impact on the environment, researches on the assessment of soil contamination with dangerous xenobiotics, primarily heavy metals (HMs) and hydrocarbons (HCs), which have mutagenic, teratogenic and carcinogenic properties and pose an immediate threat to human health, have become relevant in recent decades [1] [2] [3] [4]

  • Using ecological and geochemical analytical methods, a widespread excess of maximum permissible concentration (MPC) of mobile forms Ni, Pb, Cu and Zn was recorded in the soil samples of Krasny Kut, and a single excess of MPC was observed for Cr and Cd

  • To identify sources of HM contamination of urban soils, an assessment of the magnetic susceptibility of soils is used while an assessment of thermomagnetic effect is used to search for hydrocarbon contamination [13] [14]

Read more

Summary

Introduction

Due to an exponential growth in industrial production and an increase in anthropogenic impact on the environment, researches on the assessment of soil contamination with dangerous xenobiotics, primarily heavy metals (HMs) and hydrocarbons (HCs), which have mutagenic, teratogenic and carcinogenic properties and pose an immediate threat to human health, have become relevant in recent decades [1] [2] [3] [4]. Under the influence of increased concentrations of HMs and HCs, many researchers have established changes in soil biological activities: reduction in the number of certain groups of soil microorganisms [15] [16] [17] [18] and an inhibition of soil enzyme activities (dehydrogenases, catalases, ureases, amylases, invertases, etc.) [19] [20] [21]. Based on these facts, the number of microorganisms of certain ecological and physiological groups and the activity of soil enzymes are widely used as indicators in soil-ecological monitoring of urban soils [22] [23] [24]. There has been very little research conducted on the biological, ecological, geochemical and magnetic properties of soils in small industrialized cities

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.