Abstract

Differences in the biological and ecological strategies of two tropical flatfishes, Etropus crossotus (fringed flounder) and Citharichthys spilopterus (bay whiff) are discussed. The comparative analysis was based on the seasonal distribution of relative abundance of the two species and flatfish movements utilizing estuarine plume influenced areas as part of their life cycles. Growth parameters of the von Bertalanffy equation and recruitment were estimated (FISAT software) to compare life cycle patterns. The recruitment patterns illustrate the key difference between “estuarine-dependent” and “estuarine-related” nekton strategies. Both species have a short life cycle with a continuous recruitment activity. E. crossotus is an estuarine-related species, with two recruitment pulses ( winter frontal season), in the estuarine plume on the shelf. C. spilopterus is an estuarine-dependent species, with a main recruitment pulse during the rainy season in the estuarine plume, and a residual secondary pulse inside the adjacent estuarine system (Terminos Lagoon). The results show that the ecological success of these tropical coastal marine flatfish, with similar biological patterns, is based upon the sequential use (in time and space) of estuarine plume influenced habitats, suggesting that fish migration to shallow waters is related to food availability changes as a strategy towards optimum recruitment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call