Abstract

Becker, D. J., Albery, G. F., Kessler, M. K., Lunn, T. J., Falvo, C. A., Czirják, G. Á., Martin, L. B., & Plowright, R. K. (2020). Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. Journal of Animal Ecology, 89, 972-995. Ecoimmunology seeks to identify and explain natural variation in immune function. Most research so far has focused on differences among individuals within populations, which are often driven by trade-offs in resource allocation between energetically costly immunity and competing processes such as reproduction. In their review article, Becker et al. (2020) have proposed a framework to explicitly address habitat- and population-level differences in wildlife immune phenotypes. Termed macroimmunology, this concept integrates principles from ecoimmunology and macroecology. Becker et al. (2020) have highlighted three non-mutually exclusive habitat features that are likely to vary at spatial scales and influence immune function: (a) parasite pressure, (b) abiotic and biotic factors and (c) anthropogenic changes. However, a large and robust body of literature suitable for synthesis to detect macroimmunology patterns and effect sizes is not yet available. Through their systematic review and critical assessment, Becker et al. (2020) identified common problems in existing research that hinders spatial inferences, such as a need for spatial replication in study design and statistical analyses that account for spatial dependence. Overall, macroimmunology has the potential to identify and even predict spatial patterns in immune phenotypes that form the mechanistic underpinnings of important wildlife disease processes, and this review represents an important step to realizing these goals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.