Abstract

Stormwater management is of great importance in large shrinking cities with aging and outdated infrastructure. Maintenance of vegetated areas, particularly referred to as green infrastructure, is often aimed at mitigating flooding and the urban heat island effect by stormwater storage and evaporative cooling, respectively. This approach has been applied in large cities as a cost-effective and eco-friendly solution. However, the ecohydrological processes and how the ecohydrology influences the function of green infrastructure and its potential to provide those ecosystem services are not well understood. In this study, continuous field measurements including air temperature, stomatal conductance, and phenocam images were taken in a 308 m2 bioswale retrofitted into a 4063 m2 parking lot on the Wayne State University campus in Detroit, Michigan over a two-year period. Our results suggest that plant characteristics such as water use efficiency impact the ecohydrological processes within bioswales and that retrofitted bioswales will need to be adapted over time to meet environmental demands to allow for full and sustained success. Therefore, projected shifts in precipitation regime change are expected to affect the performance of green infrastructure, and each bioswale needs to be developed and engineered to be able to adapt to changing rainfall patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call