Abstract

The water balance in mountain regions describes the relations between precipitation, snow accumulation and melt, evapotranspiration and soil moisture and determines the availability of water for runoff in downstream areas. Climate change is affecting the water budget of mountains at a fast pace and it has thus become a priority for hydrologists to quantify the vulnerability of each hydrological component to climate change, in order to assess the availability of water in the near future. However, our incomplete understanding of mountain hydrology implies that our knowledge about the future water supply of billions of people worldwide is limited. In this thesis, I use the ecohydrological model Tethys-Chloris (T&C) to (1) explore the responses of forests to the increasing atmospheric CO2, (2) quantify the major drivers of ecohydrological processes and their vulnerability to climate change across the European Alpine environments, and (3) partition the water budget into blue (hydrological) and green (biological) water fluxes and quantify the sensitivity of each component to temperature and precipitation change at the pan-Alpine scale. The first part of the thesis focuses on vegetation parameterization in ecohydrological models. It is a common practice to apply static vegetation parameters, although recently several studies have questioned this approach, showing that vegetation may adjust to climate change at shorter timescales than previously thought. This implies that traditional model approaches using temporally constant parameters might be biased. Recent evidence suggests that one such example of vegetation plasticity may be related to the increasing atmospheric CO2 concentrations. Through numerical simulations with TC changes that otherwise cannot be explained. In the second part of the thesis, I explore the key drivers of Alpine ecohydrology. Applying T&C on three case studies, I quantified the drivers of ecohydrological fluxes and explored the vulnerability of different Alpine ecosystems to climate change. By correlating the spatial distribution of ecohydrological responses with that of meteorological and topographic attributes, I computed spatially explicit sensitivities of net primary productivity, transpiration, and snow cover to air temperature, radiation, and water availability to evaluate their absolute and relative importance. The results demonstrate the sharp differences between different parts of the Alps, thus highlighting the need for a high-resolution assessment of the Alpine water budget. The third part of the thesis addresses the ecohydrological sensitivity to climatic variables across the Alps. I collected a dataset from meteorological and environmental agencies and universities from six countries and combined it with new distributed products of meteorological forcing, soil properties, vegetation and snow cover to perform and validate…

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call