Abstract

Flow duration curve provides an important synthesis of the relevant hydrological processes occurring at the basin scale, and, although it is typically obtained from field observations, different theoretical approaches finalized to its indirect reconstruction have been developed in recent years. In this study a recent ecohydrological model for the probabilistic characterization of base flows is tested through its application to a study catchment located in southern Italy, where long historical series of daily streamflow are available. The model, coupling soil moisture balance with a simplified scheme of the hydrological response of the basin, provides the daily flow duration curve. The original model is here modified in order to account for rainfall reduction due to canopy interception and stress its potential applicability to most of the ephemeral Mediterranean basins, where measurements of air temperature and rainfall often represent the only meteorological data available. The model shows a high sensitivity to two parameters related to the transport and evapotranspiration processes. Two different operational approaches for the identification of such parameters are explored and compared: by the first approach, these parameters are considered as time invariant quantities, while, in the second approach, empirical relationships between such parameters and the underlying climatic forcings are first derived and then adopted in the parameters calibration procedure. The model ability in reproducing the empirical flow duration curves and the model sensitivity to climate forcings, here referred as elasticity of the model, are investigated and it is shown how the adoption of the second approach leads to a general improvement of the model elasticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.