Abstract

AbstractSeasonally dry, water‐limited regions are often co‐dominated by distinct herbaceous and woody plant communities with contrasting ecohydrological properties. We investigated the shape of the above‐ground net primary productivity (ANPP) response to annual precipitation (Pa) for adjacent grassland and shrubland ecosystems in Southern California, with the goal of understanding the role of these ecohydrological properties on ecosystem function. Our synthesis of observations and modelling demonstrates grassland and shrubland exhibit distinct ANPP‐Pa responses that correspond with characteristics of the long‐term Pa distribution and mean water balance fluxes. For annual grassland, no ANPP occurs below a ‘precipitation compensation point,’ where bare soil evaporation dominates the water balance, and ANPP saturates above the Pa where deep percolation and runoff contribute to the modelled water balance. For shrubs, ANPP increases at a lower and relatively constant rate across the Pa gradient, while deep percolation and runoff account for a smaller fraction of the modelled water balance. We identify precipitation seasonality, root depth, and water stress sensitivity as the main ecosystem properties controlling these responses. Observed ANPP‐Pa responses correspond to notably different patterns of rain‐use efficiency (RUE). Grass RUE exceeds shrub RUE over a wide range of typical Pa values, whereas grasses and shrubs achieve a similar RUE in particularly dry or wet years. Inter‐annual precipitation variability, and the concomitant effect on ANPP, plays a critical role in maintaining the balance of grass and shrub cover and ecosystem‐scale productivity across this landscape. Copyright © 2015 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.