Abstract
The patterns of variation in vegetative indices received by means of data of remote land sensing are described as being dependant on geomorphological predictors and the sizes of agricultural fields in an experimental polygon within Poltava region. The possibilities of application of vegetative indices have been explored through ecogeographical determinants of the ecological niche of the common milkweed (Asclepias syriaca L.) and other weeds. On the basis of images of the land surface taken on 23 March and 27 August 2015 by the sensor control Operational Land Imager (OLI), installed on the satellite Landsat 8, vegetative indices have been calculated (AC-Index – aerosol/coastal index, Hydrothermal Composite, NDTI – Normalized Difference Tillage Index, NDVI – Normalized Difference Vegetation Index, VI – Vegetation Index, MNDW – Modified Normalized Difference Water Index, LSWI – Land Surface Water Index, NBR – Normalized Burn Ratio, M15). The data obtained have been subjected to principal component analysis and the revealed principal components have been interpreted with the help of regression analysis, in which geomorphological variables have been applied as predictors. It was possible to explain the trends of variability of the vegetative cover, formalized in the form of the principal component, by means of indices which quantitatively characterise features of relief. The various aspects of variation of vegetative cover have been shown to be characterised by the specificity of the influence of relief factors. A prominent aspect of the variation of the vegetative cover of agroecosystems is variability within a field. The degree of a variation of conditions is proportional to the size of a field. Large fields occupy level plain positions. In turn, within small fields sources of variation are changes in ecological conditions which arise owing to unevenness of relief, which increases in proximity to gullies and ravines. We have identified the aspects of the variation of vegetative cover which by their nature can be considered as contributers to the growth of weeds in agroceonoses. Satellite imaging by Landsat does not allow direct identification of concentrations of weeds, but it can reveal complex changes in the landscape cover, which act as markers of the processes connected with development of weed vegetation. The procedure of further decoding of satellite images for the purpose of identification of weeds requires greater attention in this field of research.
Highlights
Установлено закономірності варіювання значень вегетаційних індексів, одержаних за допомогою даних дистанційного зондування Землі залежно від геоморфологічних предикторів і розмірів сільськогосподарських полів експериментального полігону в межах Полтавської області
The data obtained have been subjected to principal component analysis and the revealed principal components have been interpreted with the help of regression analysis, in which geomorphological variables have been applied as predictors
It was possible to explain the trends of variability of the vegetative cover, formalized in the form of the principal component, by means of indices which quantitatively characterise features of relief
Summary
Розвиток багатоканальної космічної зйомки та технологій побудови тривимірних моделей рельєфу створює нові можливості для дослідження зв’язків видів з умовами середовища та оцінювання якості місцеперебувань (Puzachenko et al, 2006; Zhukov et al, 2011; Demydov et al, 2013). У нашій роботі використано матеріали з набору інструментів Operational Land Imager (OLI), установленого на супутнику Landsat 8 (Geological Survey (U.S.), and EROS Data Center 1900 EarthExplorer [Reston, Va.]: U.S Dept. Of the Interior, U.S Geological Survey, www.purl.access.gpo.gov/GPO/LPS82497). Який містить інформацію про розташування сільськогосподарських полів, установлено їх площу, яку для аналізу логарифмовано (Log_Area). Для створення цифрової моделі рельєфу інформацію одержано з ресурсу EarthExplorer Продукт SRTM (Топографічна радарна місія шатлів – Shuttle Radar Topography Mission) надає інформацію про висоту поверхні Землі із заповненими пустотами з роздільною здатністю 1 арксекунда (близько 30 м). Похідні від цифрової моделі рельєфу одержано за допомогою програми SAGA 2.2.2 (www.saga-gis.org). Таблиця Типологія індексів Landsat 8 OLI* (Operational Land Imager) and TIRS (Thermal Infrared Sensor)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.