Abstract

Coarse particulate organic matter (CPOM) represents a small portion of the inner shelf sediments but occurs across all river outlets. To consider the ecogeochemical fate of CPOM in such an environment, we examined both the infauna community and secondary evidence of geochemical reactions preserved in the surface sediments of the Rhône prodelta. ICP-AES, scanning electron microscopy and energy dispersive X-ray spectrometry of the CPOM showed that the fate of organic matter in this environment is driven by sulphate reduction and geochemical reactions resulting from the precipitation of sulfide due to the presence of large amounts of iron-bearing minerals. Leaf litter debris contained such high quantities of iron that after dry ashing the remaining material is easily attracted by a magnet. The observed geochemical trade-off was proposed as a mechanism that helps to maintain a bioturbating animal community that in turn contributes to the mineralization of organic matter within this suboxic environment. This study showed that the accumulation of refractory organic carbon in sediments was intimately associated with the sequestering of iron and sulphur by providing a nucleation point for mineral deposition and also that the extent of decomposition of the organic materials did not necessarily increase progressively from coarser to finer particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.