Abstract

Losses from corrosion contribute roughly 3-5% of the gross domestic product of developed nations, and among the many methods used to avoid corrosion, using silane-based coatings is seen to be of the biggest importance due to their low toxicity and superior adhesive qualities. It is essential to develop an anti-corrosion coating that is efficient, economical, and eco-friendly. The corrosion resistance and durability of various silane-based coatings such as 1,2-bis(triethoxysilyl)ethane (BTSE), bis[3-(triethoxysilyl)propyl]tetrasulfide (TESPT), and vinyltrimethylsilane (VTES) for carbon steel 1018 substrates were investigated in a high-salinity environment (4.5 wt % NaCl). The corrosion resistance performance was evaluated via potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Results revealed that the TESPT film (pH ≈ 7) has the best corrosion resistance performance on the carbon steel surface in the aggressive chloride environment, that is, 99.6%. The high corrosion resistance of the TESPT film is due to the hydrophobic nature of this silane, which leads to the formation of a stable and dense film. These results were supported by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.