Abstract

A number of physical, chemical, and biological technologies have been developed to address the issue of synthetic dyes in wastewater. One of the important chemical methods involves reduction of these stringent pollutants into less hazardous products. In this study, a cross-linked polyurethane foam (CPUF) was prepared from toluene diisocyanate (TDI), tetraethylenepentamine (TEPA), and polycaprolactone diol (PCL; Mw: 1000 g/mole). To avoid harmful reducing agents, ecofriendly reduction of methylene blue (MB) was executed with CPUF as catalyst where ascorbic acid and fresh juice extracts were applied as reducing agents. The FTIR and SEM analysis confirmed the chemical composition and porous morphology of CPUF, respectively. The 100% reduction of MB was recorded in just 15 minutes with ascorbic acid and CPUF, while similar result was obtained in 37 minutes in blank experiment composed of only MB and ascorbic acid. Thus, catalytic role of CPUF in reduction process was proved. Fresh fruit extracts also participated in the reduction process, but rate of reaction was accelerated in the presence of CPUF. The reusability study of the catalyst supported its stability and efficiency. All the successful reduction processes followed 1st-order kinetics with highest apparent rate constant for ascorbic acid. Furthermore, phytotoxicity evaluation proved safe reduction of MB with 60% germination index. Hence, it can be concluded that catalytic role of CPUF has been established with safe and biodegradable reducing agents which can be extended to other redox processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.