Abstract

Herein is presented a simple and sensible method to determine organic pollutants in water, based on the utilization of silver nanoparticles (AgNPs) loaded in Polyacrylamide (PAAm)/starch hybrid hydrogels combined with surface-enhanced Raman scattering (SERS) spectroscopy. The materials were characterized by swelling degree studies, UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD) and scanning electron microscopy (SEM). PAAm/starch hydrogels showed variable swelling capacity, according to the synthetic molar composition. The most promising results were attributed to lower concentrations of starch and crosslink agent (N,N'-methylenebisacrylamide - MBA). Spectroscopic analysis confirmed the formation of AgNPs, by noticing the peak at around 420nm, due to its surface plasmon resonance (SPR) effect. The results showed that AgNPs were stabilized by hydrogels networks. The average size of the AgNPs was smaller than 100nm and the size and quantity of nanoparticles were influenced by the molar composition of the hydrogel matrix. The SERS substrate based on the AgNPs-PAAm/starch exhibited reproducibility, stability, and limit of detection (LOD) of phenol in water of 1×10-8M. The average mass of AgNPs-PAAm/starch hydrogels used for each detection analysis was around 10mg. The spectra with enhanced intensities were possible due to a large number of hot spots generated on the AgNPs-PAAm/starch hydrogel substrate, which leads to potential use for organic pollutant detection. In addition, there is also the possibility of reusing the hydrogel matrix substrate in other analyzes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.