Abstract

Background: Green solvents such as microemulsion were used in the proposed method because they play a vital role in the analytical method's influence on the environment. Objective: A highly sensitive, specific, and validated stability-indicating eco-friendly green microemulsion liquid chromatography (MELC) method was developed for separation of the antihistaminic drug Azelastine HCl (AZL) from its degradation products with application to degradation kinetics. Methods: Chromatographic separation was operated on a C18 column with a microemulsion mobile phase, which consists of 0.1 M sodium dodecyl sulphate, 10% n-propanol, 1% n-octanol, and 0.3% triethylamine, by using 0.02 M phosphoric acid at pH 3.5 and irbesartan as internal standard. The eluted compounds were monitored at 210 nm with flow rate 1 mL/min at ambient temperature. Results: A linear dependence of the peak area on drug concentration over the concentration range of 0.1 to 25 μg/mL was achieved with an LOD of 0.04 μg/mL and an LOQ of 0.10 μg/mL. Moreover, the proposed method was successfully applied for determination of AZL in eye drops and metered dose nasal inhaler as well as to study the kinetics of alkaline, acidic, neutral, oxidative, and photolytic degradation processes of AZL according to the International Council for Harmonization guidelines. Conclusions: The proposed method could be used as a harmless alternative for quality control analysis of the mentioned drug, without interference from dosage form additives or decomposition products. Highlights: A highly sensitive stability-indicating eco-friendly green MELC method was developed for the separation of the antihistaminic drug AZL from its degradation products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.