Abstract

The efficiency of Cladophora species for the removal of Reactive Orange 107 (RO107) from the aqueous solution was evaluated through batch adsorption studies by optimising various process parameters such as pH (3-8), dye concentration (100-500mg/l), biosorbent concentration (100-500mg/l), temperature (25-45°C) and contact time (12-108h). The results revealed that the optimum conditions for RO107 decolourisation (87%) was found on 72h of incubation with 100mg/l dye concentration amended with 200mg/l biosorbent at pH 6 at 25°C. The mechanism of dye adsorption was evaluated using isotherms, kinetics and thermodynamic models. The experimental data fitted well with Langmuir isotherm and pseudo-second-order kinetic models. Thermodynamic studies revealed that the adsorption process was endothermic, spontaneous and feasible in nature. Recovery of RO107 from the Cladophora sp. was maximum when 0.1M HNO3 was used as an eluent. UV-Visible, FT-IR and SEM analyses reveal the interaction between the biosorbent-adsorbate and confirm the process of decolourisation by Cladophora sp. In order to evaluate the nature of the untreated and treated dye solutions, toxicological studies were conducted and the results revealed that the treated dye solution was non- toxic as compared with untreated dye solution. The results of the docking study proved that there was a substantial binding energy between RO107 and the protein (Cytochrome C6) of Cladophora sp. Hence, Cladophora sp. proves to be a promising biosorbent to decolourise RO107 and its potential can be explored in the textile sectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call