Abstract

Nanoparticles (NPs) have enormous applications in every field of science by their particular size, diverse morphology, and higher surface-ratio, which provide them for unique properties. Nanosized materials can be used to overcome almost every challenge in science. The development of nanoscience, metal or metal oxide NPs have emerged as promising materials. Especially, zinc oxide nanoparticles (ZnO NPs) have remarkable applications in diverse fields including cosmetic, optical, and electrical fields, biomedicine, and catalysis. Several cost-effective strategies using different chemicals, plants, and microbes mediated ZnO NPs are reported in several studies, among which fungal-mediated approaches have gained tremendous interest due to their eco-friendly and simple protocols. In this study, we report the formation of ZnO NPs with sizes ranging between 13 and 15 nm using Acremonium potronii, a new fungal species found in fruits, soil, and marine environments. The obtained ZnO NPs are characterized by several analytical techniques, and their catalytic activity in the degradation of methylene blue dye is investigated, including a kinetic study to investigate the rate of degradation process. The ZnO NPs can degrade about 93% of the dye. This work demonstrates the potential of the synthesized ZnO NPs as dye removal catalysts and offers a platform for the application of A. potronii.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.