Abstract
Improving the efficiency of coal-fired power plants has numerous benefits. The control strategy is one of the major factors affecting such efficiency. However, due to the complex and dynamic environment inside the power plants, it is hard to extract and evaluate control strategies and their cascading impact across massive sensors. Existing manual and data-driven approaches cannot well support the analysis of control strategies because these approaches are time-consuming and do not scale with the complexity of the power plant systems. Three challenges were identified: a) interactive extraction of control strategies from large-scale dynamic sensor data, b) intuitive visual representation of cascading impact among the sensors in a complex power plant system, and c) time-lag-aware analysis of the impact of control strategies on electricity generation efficiency. By collaborating with energy domain experts, we addressed these challenges with ECoalVis, a novel interactive system for experts to visually analyze the control strategies of coal-fired power plants extracted from historical sensor data. The effectiveness of the proposed system is evaluated with two usage scenarios on a real-world historical dataset and received positive feedback from experts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Visualization and Computer Graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.