Abstract

New cement-based materials such as alkali-activated binders (AABs) or geopolymers allow the incorporation of waste or industrial by-products in their formulation, resulting an interesting valorization technique. Therefore, it is essential to inquire about the potential environmental and health impacts throughout their life cycle. In the European context, a minimum aquatic toxicity tests battery has been recommended for construction products, but their potential biological effects on marine ecosystems have not been considered. In this study, three industrial by-products, PAVAL® (PV) aluminum oxide, weathered bottom ash (WBA) resulting from incinerator bottom ash and glass cullet recycling waste (CSP), were evaluated as precursors in the AAB formulation from an environmental point of view. To determine the potential effects on marine environment caused by the leaching of contaminants from these materials into seawater, the leaching test EN-12457-2 and an ecotoxicity test using the model organism sea urchin Paracentrotus lividus were conducted. The percentage of abnormal larval development was selected as endpoint of the toxicity test. Based on the results obtained from the toxicity tests, AABs have less damaging impact (EC50 values: 49.2%–51.9%) on the marine environment in general than raw materials. The results highlight the need to stablish a specific battery of toxicity tests for the environmental assessment of construction products on marine ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.